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Fisher renormalisation and the application of RSRG methods to 
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Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 
3NP, UK 

Received 4 November 1985 

Abstract. The application of RSRG methods to annealed random systems is studied with 
special reference to the violation of Fisher renormalisation by approximate techniques. 
An RSRG cluster approximation is first applied to the annealed dilute Ising model to obtain 
flowlines and fixed points. Other possible forms of scaling are considered, and how they 
may be tested against the scaling of equivalent pure models. It is argued that to satisfy 
Fisher renormalisation it is necessary to allow the probability distribution of the annealed 
system to evolve, under length scaling, from its initial simple form. The evolution is 
investigated for the annealed dilute q-state Potts model on the diamond Berker lattice 
(which can have either sign for the pure specific heat exponent a). By using the width of 
the distribution as a crucial additional scaling parameter, it is shown how the flow in the 
increased parameter space can satisfy the Fisher renormalisation criterion and allow the 
proper appearance of the random fixed point. The treatment is less complete than that 
for the quenched case because of the need to approximate a relation between indicator 
functions and the probability distribution. 

1. Introduction 

Real space renormalisation group (RSRG) methods (see Burkhardt and van Leeuwen 
1982) have been extensively applied to lattice based critical phenomena, since they 
incorporate the crucial scaling concept in a very direct way allowing contact with 
intuitive physical ideas. The RSRG method is particularly appropriate for critical 
properties of systems with randomness such as dilution since the position space 
formulation can deal directly with strong local disorder. The method, however, has 
its limitations, of which the best known and most important is the uncontrolled nature 
of its approximations such as the cluster truncation normally used. The application 
to random systems, however, introduces a new source of approximation, related to 
the scaling of the distribution describing the randomness. It has been discussed 
elsewhere (da Cruz and Stinchcombe 1986, hereafter called dcs) how this approxima- 
tion can lead to violation of the well known Hams criterion (Harris 1974) for quenched 
random systems, and how this difficulty can be resolved. In the present paper we 
consider the analogous problems for annealed random systems. 

In the annealed dilute problem the disorder variable is also a thermodynamic 
variable (see Stinchcombe 1983). In simple bond dilution it can be modelled by an 
extra variable in the middle of the bond (decoration of the lattice: see Syozi and 
Miyazima (1966) and Syozi (1972)). One important aspect of bond-decorated lattices 
is that, because the decorating variable interacts only with its two neighbouring sites, 
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its local environment is like a I D  chain. Consequently one can trace out the decorating 
variables to convert the problem into another involving only the spin variables 
interacting through a nearest-neighbour pair interaction on the matrix lattice. For the 
annealed system this maps the problem into an equivalent pure one, so that the exact result 
is known whenever the corresponding pure problem can be exactly solved. This was first 
realised by Syozi (1972) and Rapaport (1972). Thorpe and Beeman (1976) treated the 
annealed problem with an arbitrary distribution P ( J )  ofthe exchange interaction J, in the 
same fashion. 

The extra thermodynamic variable in the annealed case can produce a critical 
behaviour different from the pure one. This change of behaviour will naturally be 
reflected in the critical exponents. Its renormalisation has been studied in a more 
general context by Essam and Garelick (1967) and Fisher (1968) and became known 
as Fisher renormalisation. For annealed magnets the Fisher renormalisation states that 
if the pure specific heat exponent a is positive the annealed critical exponents take 
‘renormalised’ values given by 

apure  + a’ = - a p u r e / ( 1 -  apure)  

P p u r e + I b I  = P p u r e I ( 1 - a p u r e )  

Ypure+ IT1 = ~ p u r c / ( 1  - a p u r e )  

Gpure + I6 I = Spure 

Vpure + i = Vpure/ ( 1  - a pure) 

v p u r e +  i = vpure 

- 

where the exponents on the right-hand side are the pure ones. If apure is negative, 
however, the annealed exponents are the same as the pure ones. Therefore & is always 
negative and consequently the specific heat is not divergent. These renormalised 
exponents satisfy the usual scaling relations. 

The criterion, cypure > 0, for Fisher renormalisation is the same as the Harris criterion 
for crossover to new (‘random’) critical behaviour in systems with quenched disorder. 
Approximate techniques usually violate such a criterion and, a fortiori, the exact 
relations (1). 

An RSRG method is given for the annealed dilute Ising problem in § 2 (where 
preliminaries for later discussions are also introduced, including the mapping to the 
pure system, and a generalised hyperscaling relation). Though such RSRG methods 
have many attractions it is unsatisfactory that they do not automatically satisfy the 
Fisher renormalisation criterion or the relations ( 1 ) .  The origin of this inadequacy is 
discussed in § 3 and (as in dcs for the quenched system) restricting the evolution of 
the distribution function is suggested as the cause. In § 3 various scaling approaches 
are outlined, some exploiting the relationship of the annealed system to the equivalent 
pure system. One of these different possibilities provides a ‘trick’ way of exactly 
satisfying Fisher renormalisation within an RSRG approach. Others suggest ways of 
testing where the violation of the Fisher criterion arises in more standard RSRG 

approaches. Sections 4 and 5 carry out such a test, on the annealed diluted q-state 
Potts model on a Berker lattice: this system is considered because its pure limit can 
have either sign of a. The analytic preparations are given in 0 4, and the results are 
obtained in § 5 by continuing with a numerical attack, which confirms the need to 
allow the evolution of the distribution under scaling. Section 6 is a concluding 
discussion. 
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2. Use of RSRG on annealed dilution 

The RSRG method for annealed dilute problems is illustrated here by an application 
to the Ising system. The annealed bond-dilute Ising square net can be treated by an 
RSRG cluster decimation or Migdal method. In the simplest form of cluster decimation 
the trace is taken over two (‘decimated’) spins of a four-spin cluster to scale its Gibbs 
factor into that for a single renormalised bond (length scale factor b =d2) :  

exp(K’SiSj7ij+p’7v). (2) 
Here K ‘  and p’  are the scaled values (indicated by primes) of exchange and chemical 
potential (times a factor p )  and 7 is the disorder variable that indicates the absence 
or presence of the bond by assuming values 0 or 1. This gives 

2( 1 + X)’t’ 
= [2 + 4 x  + X’( 1 + t ” ]  

X [ 2  + 4 x  + X’( 1 + t ” ]  
(1+2X)2 

X ’  = 

(3) 

(4) 

where t tanh K and X =  e” cosh K .  Exactly the same equations (3) and (4) also 
result in the simplest form of Migdal approximation. However here the form of 
cluster is different and the length scaling corresponds to b == 2. 

The bond concentration is given by the thermal average (T), and p is temperature 
dependent to keep p fixed. (7) is most easily evaluated by using the mapping (given 
hereafter) to a pure system by means of a partial trace over the disorder variables. 

The grand partition function S of the annealed system has the trace over both 
thermodynamic variables 

( 5 )  E = Tr Tr e-BH. 
{ S )  (9) 

The trace over 7, however, can be taken separately as each 7 only involves a single 
bond. The reduction for each bond is 

Tr 90 exp( KSIS277, + pv,) = exp(do+ dS,S2) ( 6 )  

with 

e x p ( ~ d , )  = [exp(p + K )  + 11[exp(p - K )  + 11 

exp(2d)  = [exp(p + K )  + l]/[exp(p - K )  + 13. 
(7) 

(8) 
This result expresses the original annealed system in terms of an equivalent pure Ising 
model on the same lattice, with variables y do. 

By letting p + 00, in this last equation, one finds that d + K so that the pure limit 
( p  = 1) of the original system occurs when X = CO. 

Using these results the grand partition function of the annealed system can be 
rewritten as 

E = exp( N d o ) Z (  d )  (9) 
where N is the number of bonds and Z ( d )  is the partition function of the equivalent 
pure system. This gives 

1 a l n S  ad, 1 d l n Z ( d )  ad 
N ap ap N d K  ap 

( q ) = p = -  -=-+- - -* 
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The derivatives of ko and k with respect to p can be calculated exactly from (7)  
and (8). The factor that multiplies this last derivative is the nearest-neighbour spin-spin 
correlation function ( S1 S,), which in this system is also the dimensionless internal 
energy per bond. Of course, this can be calculated exactly (see McCoy and Wu 1973). 
For consistency, however, it will here be calculated by applying RSRG to the equivalent 
system using the same four-bond cluster that leads to (3)  and (4) .  

Defining the dimensionless free energy per bond as 

f =  PF/N = -In ZIN (11)  

the required factor can be expressed as -d f (k ) /dk .  

yields 
From Nauenberg and Nienhuis (1974) decimation on the equivalent pure system 

where L is the ratio of the number N of bonds in the original cluster to that in the 
decimated cluster and g is given by 

exp(H[k ' ]+ Ng[k ] )  =Tr exp(H[k])  
{s) 

where the trace is, as usual, over the decimated spins. 
The explicit form of (13) for the present case is (see Jayaprakash et a1 1978) 

exp( kfS1S4+ 4 g (  k ) )  = Tr [exp( IblS2 + k S 2 S 3  + kS, S3 + kS3S4)] (14) 
s2~s3 

giving 

g [ k ( m ) ]  = ln(4 cosh 2k'"')) 

and 

kc'") = ln(cosh 2k'"-") 

where the value used for L was four (since four bonds of the original cluster are 
replaced by a single renormalised bond). This then gives 

Using the chain rule and (15) the derivative on the RHS of the last equation can be 
written as 

0 
-=I dg[k('")] 42 m n tanh[2k'"]. 

d K  l = m  

Thus ( l o ) ,  (17) and (18)  give p in terms of ko which are, in turn, known from 
(7) and (8) in terms of p, K, or equivalently X ,  t. The scaling of these latter variables, 
given in (3)  and (4),  can then be converted to scaling of p ,  t, and this proceduPe results 
in the flowlines plotted in figure 1. The arrows indicate the direction of flow and their 
spacing the speed of flow. The fixed points are represented by semi- and quarter 
circles. The bold lines are the critical curves. Phase 1 has a non-zero magnetisation 
and an infinite cluster is present. Phase 2 has no net magnetisation, although the 
infinite cluster is still present. Phase 3 has no infinite cluster and therefore no net 
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Figure 1. Flowlines of the annealed dilute Ising model on the 2D square net are plotted 
in the space of parameters p = concentration, t = tanh J/K,T.  The arrows indicate the 
direction of flow and their spacing the speed of flow. The fixed points are represented by 
semi- and quarter circles. The thick lines are the critical curves. Phase 1 has a non-zero 
magnetisation and an infinite cluster is present. Phase 2 has no net magnetisation, although 
the infinite cluster is still present. Phase 3 has no infinite cluster and therefore no net 
magnetisation. 

magnetisation. The bold broken curve (separating phases 2 and 3) is not a straight 
line, as it would be in a quenched system. This is due to the thermal dependence of 
the probability of a bond being present. 

The question now arises whether figure 1 is consistent with the Fisher criterion. 
On the critical line between phases 1 and 2 the flow is towards the pure fixed point. 
This is consistent if apure<O. However from (7) we can calculate vpure and obtain 
apure using hyperscaling. For the cluster decimation interpretation, where b = J2, vpure 
turns out to be such that inserting d = 2 into hyperscaling leads to apure> 0, thus 
implying a violation of the Fisher criterion. On the other hand, the Migdal cluster 
interpretation, where b = 2, leads, with d = 2, to cypure < 0, implying no violation. This 
ambiguous result can be clarified by the following generalised view. The pure specific 
heat exponent can be evaluated directly from (17), and it turns out to be negative and 
equal to 

apure  = 2 - dfvpure (19) 

where vpure = In b/lnA, d f =  In L/ln b with A the eigenvalue of the (pure) transformation 
(16) linearised about its critical fixed point. d f  is the fractal dimension of the system 
as represented by the cluster approximation being used, and this is two, the same as 
d, for the Migdal interpretation, but is four for the cluster interpretation. If the proper 
fractal dimension is used, the (generalised) hyperscaling relation (19) and the Fisher 
criterion are satisfied. These results are shown in table 1. 

Unfortunately this does not dispose of a much more basic and general problem: 
Fisher renormalisation (i.e. the relationships (1)) and even the Fisher criterion can be 
violated because the indicator variables change their nature under scaling. This has 
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When annealed dilute systems are scaled the indicator variables change their form. 
This is because when a set of indicator (or ‘bond’) variables, each taking two values, 
is replaced (under decimation) by a single variable, that variable has strictly more than 
two outcomes. This generalisation is like the evolution of the (originally binary) bond 
distribution function occurring in the scaling of quenched dilute systems. In most 
RSRG treatments of quenched dilute systems, this effect is ignored and, as shown in 
dcs, it can lead to the violation of the Harris criterion. Similarly, the treatment of 
annealed dilution given in the previous section suppresses the evolution of the distribu- 
tion of outcomes for the indicator variable 7 (which was taken to remain binary in 
(2)). We now investigate the consequences of this approximation for the annealed 
system and its generalisation. 

As annealed systems can be mapped into an equivalent pure one, one should be 
able to assess the effect of the binary approximation by studying the behaviour of an 
annealed system and its pure equivalent under length scaling. 

What can be done is to study three systems in the manner shown in figure 2. In 
the first system, the dilute annealed problem is mapped into a pure one and decimation 
is applied to the result to obtain 8;. Here the tilde means that the system has been 
mapped into pure and the prime that it has been scaled once. In the second case the 
dilute system is first scaled, allowing for the full proliferation of bond values, and only 
then mapped into pure to obtain 8:. In the last one, scaling is done using the binary 
approximation (as above) and the result is mapped into pure to find 8;. From the 
analytical work given in da Cruz (1985) it can be shown that all these results agree. 
If in the process described above, however, instead of performing a single scaling, two 
are done, the result obtained using the binary approximation starts to diverge from 
the others (see again da Cruz (1985)). This confirms the need to allow for the 

Original Scaling 
pure - 
system 

- Scaled Scaled Scaled 
pure pure pure 
system system system 
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proliferation of bond values and, as argued in dcs for the quenched case, we expect 
for the annealed case also that a broadening of the distribution of bond values will 
be the crucial signature of (and requirement for) an instability of the pure behaviour 
to the randomness and hence to Fisher renormalisation. This is confirmed in the results 
of § 5 .  

An alternative ‘trick’ way (not pursued further here) of dealing with the annealed 
problem, without the need to allow for the full proliferation of bonds and still not 
compromising the results by using the binary approximation, can be seen from 
figure 2. One can map the system into pure, scale it and then map it back into annealed. 
This last mapping is not unique in itself, but can be made so by an additional statement 
such as that p remains constant. 

4. Analytical calculation 

We have argued, following d c s  for the quenched case, that a fuller account of the 
form of the distribution is needed (though, as mentioned at the end of the previous 
section, it is possible to avoid this by performing the scaling in the equivalent pure 
system). 

Because of the nature of the annealed problem the treatment of the distribution is 
not as straightforward as in the quenched case. Nevertheless it will be shown to be 
possible in the following section and subsequently results similar to the ones obtained 
in d c s  will be obtained. 

To perform the calculation proposed in the last paragraph but one of § 3 it is 
necessary first to generalise the Hamiltonian for the problem in two ways. The first 
generalisation is to accommodate the different possible bond values. Following Thorpe 
and Beeman (1976) the Gibbs factor for a single bond of the Ising model can be 
written as 

\ i  

where K i  = J i /k ,T ,  pi  = & / k B T  (6  is a chemical potential) and the thermodynamic 
variable f; is an indicator function (see Moran 1968) that is one if that bond has an 
exchange Ji and zero otherwise. Of course Ti and Ji are associated so as to make ( A )  
temperature independent and equal to the concentration of that particular bond type. 
The same ideas used in the previous section apply here and the mapping to the pure 
system is (see (6)-(8)) 

which gives 

exp(pi - K i )  

One important point to notice is that the inverse transformation is not uniquely 
defined. 
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The second generalisation is to the q-state Potts model on the diamond Berker 
lattice (in place of the Ising model, which corresponds to q = 2). The generalisation 
to arbitrary q allows both possible signs of apurc. The use of the Berker lattice avoids 
all approximations in treating the system by RSRG in the pure limit. 

Decimation will be performed using the cluster shown in figure 3. For a generic 
configuration of bonds this gives the following scaling equation: 

= ~ ~ P ( ~ K O + P ~  + PZ+ ~ 3 +  ~ 4 )  Tr{exp[Kl(&A,S, - I ) +  K2(Ss,,sB- 1)Il 
SI 

X T r ~ e x P [ ~ 3 ( ~ s A * s 2 - 1 ) + K 4 ( ~ S , , s , -  s2 1)Il. (24) 

The indicator functions are absent because it was assumed that the bonds have the 
prescribed values. The chemical potentials are present characterising the problem as 
annealed. Taking the traces we obtain 

exp(K6 + PI) VI[ 1 + 4 ( q S S A , S B  - 1 )I 
= [ ~ x P ( K o +  [exp(K0+ P Z ) U ~ I  [exp(K0+ p3)u31 [exp(Ko+ ~ ~ ) u ~ 1  

q2{1 (U1 U z +  q8sA.sB - 1) f ui%U3u4[q( 4 - 2) %,,sB + 111 (25) 
where 

u i = e x p ( - K i ) [ e x p ( q K i ) + q - l ] / q  
ui = [exp( q K i )  - l]/[exp( q K i )  + q - 13. 

If the spin variables are traced out of this Gibbs factor, the result will give the 
unnormalised probability of this particular arrangement. Of course this is not the 
probability for U:, as other sets of ui can also give the same U ;  (due to symmetry, etc). 
Therefore we find 

5: = q exp(Kb+p:)u: 

= c [exP(Ko + Pl)ull[exP( KO + P d u z I  

x [ ~ ~ P ( K ~ + P ~ ) ~ ~ I [ ~ ~ P ( K ~ + C L ~ ) ~ ~ I ~ ~ [ ~  + ( 4  - ~ ) U ~ U Z U ~ U ~ ] .  (26) 

Here the tilde indicates that the probability is unnonnalised and the sum is over all 
arrangements of the ui that give U:. To normalise it is necessary to divide this result 
by the partition function, which here is the sum of all 5;. The probability is thermally 
dependent because of the ui. The approximate nature of this calculation must be 

Figure 3. Cluster on which decimation is to be performed. The numbered sites are to be 
decimated, producing the scaled bond U'. 
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stressed, as correlations between indicator variables, produced by spins common to 
different clusters, were neglected. 

Writing separately, from (25), the parts that depend on the Kronecker delta and 
those which do not and dividing the former by the latter, one finds 

which is the same as the quenched result (see dcs). This is not surprising since it is 
the probability aspect that differentiates the annealed from the quenched and once the 
value of the bonds is specified the scaled bond should be the same. 

From the form of (26), one can easily see how a further scaling can be done. What 
is needed are the values of the products U {  exp(K&;) and U:. The latter ones come 
directly from (27) and the former are simply (26) divided by q. 

To treat the problem numerically one has to be able to obtain the ui exp(Ko+ p i )  
from the p i  and the ui ,  as was described in the above paragraph; however the inverse 
relation is also needed. In this problem we, in principle, start with a generalised 
distribution and make it into a histogram, which gives pi  and ui .  We need then to 
obtain from these ui exp(Ko+pi).  We know that this is equal to j i / q  and p i  = j i / A ,  
where A is the sum of all ii and therefore is unknown. This constant, however, is not 
important, because it will disappear when the i{ are normalised. Use of the scaling 
equations (26) and (27) result in a scaled set of variables from which the scaled 
distribution is obtained. 

5. Results of numerical calculation 

The calculations outlined above were carried out numerically following the procedure 
established in dcs. One particular point is mentioned here: in order to follow those 
aspects which are related to Fisher renormalisation and the appearance of a random 
fixed point it is sufficient to use a distribution, all of whose weight is at non-vanishing 
U (because the weight of missing bonds scales away for concentrations greater than 
the threshold) and to follow, in particular, the scaling of its mean U and width U. A 
Gaussian distribution was actually used and, as in the quenched case investigated in 
dcs, this is an adequate approximation to the invariant shape. The flowlines in the 
space of U and (+ are plotted in figures 4-6 for q equal to 1, 6 (for which apure<O) 
and 7 (apure>O). In these figures, the full flowlines are the ones which always flow 
towards smaller values of the width and the broken flowlines are the ones which do 
not. The arrows in the flowlines indicate direction of flow and its spacing the speed 
of flow. The asterisk in the abscissa is the pure fixed point and the star is the random 
fixed point. In agreement with the Fisher criterion, this latter fixed point occurs in 
our calculations when q 2 7 which is the case in which cypvre > 0, and for the other 
values of q ( cypure < 0) the width scales away, showing that randomness is irrelevant. 
The line going through pure and random fixed points that appears in the plots for 
q = 7 is the critical line. 

The random fixed point was found (for q 3 7) by solving the simultaneous equations 
p' - p = 0 and U' - u = 0 by a numerical method which is a combination of bisection 
and interpolation. The linearised form of the transformation around the random fixed 
point was obtained by numerical calculation of the differentials that are its matrix 
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0.6 

U 

0.4 

0.2 

0 0.002 0.004 0.006 0.008 0.010 

a 

Figure 4. Flowlines for the annealed random q = 1 Potts model. The parameters are the 
mean U and width U of the distribution of bond variables. The arrows indicate the direction 
and speed of Row. The flowlines always flow towards smaller value of the width, which 
is consistent with the criterion for no Fisher renormalisation, as apure is negative. The 
asterisk in the ordinate indicates the position of the pure fixed point. 

U 

0 0.002 0 . W  0.006 0.008 0.0% 
0 

Figure 5. Flowlines for the q = 6 Potts model. The arrows indicate the direction and speed 
of Row. The flowlines always flow towards smaller value of the width (which is consistent 
with the negative value of apurc). The asterisk in the ordinate indicates the position of the 
pure fixed point. 
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U 

Figure 6. Flowlines for the q = 7 Potts model. The labelling and other conventions are as 
in figure 4. The full flowlines always flow towards smaller value of the width, while the 
broken ones initially flow toward larger values. The asterisk in the ordinate indicates the 
position of the pure fixed point and the star indicates the random fixed point. The curve 
that goes through both fixed points is the critical line. 

elements. From these results the eigenvalues were found and from these the ‘random’ 
critical exponents. These results are presented in table 2 for q from 7-10. 

The critical exponents are again presented in table 3, but there they are compared 
with the predictions of Fisher renormalisation. We can see that they all change in the 
same direction, i.e. from the pure values towards the Fisher renormalisation predictions, 
but they are still much closer to the pure values than to the Fisher renormalisation 
predictions, and it is especially disappointing to see that CY is positive. This is discussed 
in the next section. It is interesting to see that the quenched results (dcs) are very 
close to the values prescribed by the Fisher renormalisation. 

Table 1. Comparison of RSRG exponents for the annealed 2D Ising model with those 
predicted by Fisher renormalisation applied to RSRG pure and exact results. 

Pure 
fixed point RSRG result Exact result 

vt 0.67 1 
f f t  -0.66 0 

Fisher Fisher 
Percolation renormalisation renormalisation 
fixed point RSRG result from exact from RSRG 

YP 0.67 

vt 1.01 1 0.67 
f fP  0.66 

f f l  -0.02 0 -0.66 
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Table 2. Values at the random fixed point. U* is the mean of the distribution, U* is the 
width of this distribution, A, is the eigenvalue, U is the correlation length critical exponent 
and [I is the specific heat critical exponent. 

4 U* U* Ab Y a 

7 0.412 0.136 2.003 0.998 0.004 
8 0.395 0.174 2.008 0.995 0.01 1 
9 0.379 0.187 2.019 0.987 0.026 

10 0.365 0.193 2.032 0.977 0.045 

Table 3. Specific heat critical exponent (a): comparison between the RSRG result and the 
prediction from the Fisher renormalisation. 

Fisher 
4 Pure renormalisation RSRG 

7 0.010 -0.010 0.004 
8 0.063 -0.067 0.01 1 
9 0.107 -0.119 0.026 

10 0.144 -0.168 0.045 

6. Discussion 

In this work the treatment of annealed dilute systems by RSRG methods has been 
investigated. The first approach (82)  provides a method in which, within a cluster 
approximation, the proper relationship between concentration and thermodynamic 
parameters is maintained while the bond variables are forced back to binary form. 
This approach is adequate for cases where no Fisher renormalisation should occur 
and is internally consistent provided the correct generalised hyperscaling relation 
(containing the fractal dimension) is used. 

Such methods must however fail if randomness is a relevant perturbation and the 
remainder of the investigation is concerned with tests of this situation and, in particular, 
with providing a scheme which can account more fully for the associated evolution 
under scaling of the probability distribution of the annealed case. From this, flowlines 
were plotted for several integer values of q, and the flow was found to depend on the 
sign of the pure specific heat exponent in the way expected from the Fisher criterion. 
The random fixed points were obtained in the cases where apure was positive. The 
eigenvalues at the random fixed point were obtained from the linearised form of the 
transformation and from these, the random critical exponents. 

Because the full constraint of the chemical potentials to give the temperature 
independent probability distribution was relaxed (in equation ( 2 6 ) ) ,  these exponents 
did not present numerical agreement with the Fisher renormalisation values. They 
nevertheless showed a change in the right direction (from the pure values towards the 
Fisher renormalisation ones). It would be desirable to allow more fully for the 
constraint in the chemical potentials, and it seems that for this it would be necessary 
to combine a technique like that used in 9 2 (involving the relationship between p and 
the partition function) with the generalisation to non-binary bond variables which was 
introduced in the later sections. 
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We can again remark that the difficulties in handling the full distribution can be 
avoided and still have the Fisher renormalisation satisfied by performing the scaling 
of the equivalent pure system and then mapping the result back to the annealed one. 
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